

ONYX® 12" Ultra High Vacuum, IC Target, Standard Magnetics

US Specifications

	OS Specifications					
C	onstruction					
	Anode		304 Stainless Steel			
	Cathode Body		OFHC Copper			
	Insulator		Aluminum Oxide (Al ₂ O ₃)			
C	ooling Requireme	nts				
	Flow Rate at Max	kimum Power	Consult Factory			
	Maximum Input F	Pressure, Open Drain	60 psi			
	Maximum Input	Temperature	68 °F			
D	imensions					
	A	Consult Factory	⊬——B———H ∓ — — — — — ∓			
	В	Consult Factory				

Consult Factory

General

С

General				
	Magnetic Enhancement	Permanent (NdFeB) Encapsulated		
	Maximum Temperature, Magnets Demounted	842 °F		
	Maximum Temperature, Magnets Mounted	212 °F		
	Source to Substrate Distance	2.000" - 12.000"		
	Weight, Approximate Without Options	Consult Factory		
M	aximum Sputtering Power *			
	Cathode Voltage	Consult Factory		
	Discharge Current	Consult Factory		
	Indirect Cooled Mode, DC	Consult Factory		
	Indirect Cooled Mode, RF	Consult Factory		
	Operating Pressure	Consult Factory		

Mounting, Standard

CF Flange	Consult Factory
Power Connector, DC	Consult Factory
Power Connector, RF	Consult Factory
Water, Outer Dimension Tubing	Consult Factory

Target

rangot				
Cooling	Indirect			
Diameter	Consult Factory			
Form	Circular / Planar			
Thickness	Consult Factory			

Specifications Disclaimer

- All Angstrom Sciences NdFeB magnets are totally encapsulated and protected from degradation by water.
- · All sources are available in external configurations.
- * Maximum power for cathode only, a target material's properties, such as, thermal and electrical conductivity may limit the maximum process power level.
- Some custom-engineered and specialty magnetrons may not meet standard specifications.
- Specifications are subject to change without notice.
- Typical performance. Results may vary with process parameters such as pressure, flow rate, target material, and substrate rotation, etc.

Please contact us for specifications regarding your application.

Angstrom Sciences | Call +1-412-469-8466 | www.angstromsciences.com